BCH714: Computational Systems Biology Minicourse 2024:

The Program:

28/03 Thursday	08/04 Monday	09/04 Tuesday
 09:00 Peer grading of Assessment I JMR & DvN I I:00 Research lect. DvN I 4:00 Introduction to Practical 	 9:00 Group I (First set of experiments) Group 2 (work on seminar) I 4:00 Group 2 (First set of experiments) Group I (work on seminar) 	 9:00 Group 2 (Second set of experiments Group 2 (work on seminar) 13:30 Group 1 (Second set of experiments) Group 1 (work on seminar)
10/04 Wednesday	II/04 Thursday	12/04 Friday
9:00 Data analysis JMR I 1:00 Redo experiments DvN	09:00 Research lect. JMR I 1:00 Data analysis JMR Redo experiments DvN	09:00 Data analysis (whole day) JMR
15/04 Monday	16/04 Tuesday	
I 0:30 Data analysis (whole day) JMR	09:30 Research lect. JLS Finish final report Hand in final report (16/04/2024) at 23:59	

GROUPS:

IA

- James Clarke
- Sophie de Villiers
- Elsa Pretorius

ΙB

- Courtney Campbell
- Amy Josephus
- Amogelang Mataboge

IC

- Haley Lewendal
- Suleiman Sungay
- Dom Beaumont

ID

- Brett Arnolds
- Faith Lekhu

2A

- Theo Willemse
- Katinka Louw
- Cayley Sampson

2B

- Conli Titus
- Cameron Bunch
- Marenique Smit

2C

- Le Roux Strydom
- Chrisilie Henning

2D

- Elna Kruger
- Kurauwone Marongwe

ABOUT THE PRAC:

(I) Characterise the enzyme:

(2) The experiments:

Experiment 1: Rate as a function of substrate in the presence of low FI6BP [0.5 uM]

GROUP A

- Reverse direction
- Varying [NAD+]
- Same [Lac] + [FI6BP] + [CFE] + [Hydrazine]

GROUP B

- Reverse direction
- Varying [Lac]
- Same [NAD+] + [F16BP] + [CFE] + [Hydrazine]

GROUP C

- Forward direction
- Varying [NADH]
- Same [Pyr] + [F16BP] + [CFE]

GROUP D

- Forward direction
- Varying [Pyr]
- Same [NADH] + [F16BP] +[CFE]

Experiment 2: Rate as a function of substrate in the presence of high FI6BP [10 mM]

GROUP A

- Reverse direction
- Varying [NAD+]
- Same [Lac] + [F16BP] + [CFE] + [Hydrazine]

GROUP B

- Reverse direction
- Varying [Lac]
- Same [NAD⁺] + [F16BP] + [CFE] + [Hydrazine]

```
GROUP C
```

- Forward direction
- Varying [NADH]
- Same [Pyr] + [CFE] + [F16BP]

GROUP D

- Forward direction
- Varying [Pyr]
- Same [NADH] + [CFE] + [F16BP]

(3) An enzyme assay:

a- Pipette metabolites into the cuvettes, the reaction is initiated by the addition of the cell free extract (cfe), (which contains the enzyme of interest: LDH).

b- Once the cell extract is added, measure the absorbance readings for the reaction over a period of 3mins.

c- The types of data we expect to see- Forward reaction: decreasing Abs; Reverse reaction: increasing Abs

(4) What needs to be done:

<u>Create a pipetting schema so that we investigate 10 different concentrations around the Km values. Take the following into consideration:</u>

Km		Stock concentrations	
Km(NADH)	= 0.08mM	[NADH]	= 5mM
Km(NAD⁺)	= 2.4mM	[NAD]	= 100mM
Km(Pyr)	= 1.5mM	[Pyr]	= 50mM
Km(Lac)	= 100mM	[Lac]	= 5M
		[FI6BP]	= 0.1 mM, 100mM

b - <u>Volumes</u>:

- The total cuvette volume is 1 ml.
- If you are doing reverse direction experiments (only) 25 µl of the 1 ml is the Hydrazine.
- 100 uL of the total volume is cfe.
- The other volumes are of the substrate and co-factor which you calculated in the pipetting schema.
- Lastly, the remaining volume to make up this I ml volume is done by adding buffer to the cocktail mixture.

c - The ten substrate concentrations:

- The range you are going to investigate is between Km/10 and 10Km and the fixed substrates are usually at saturating condition i.e. 10 x Km. Use Excel to create an incremental pipetting schema.